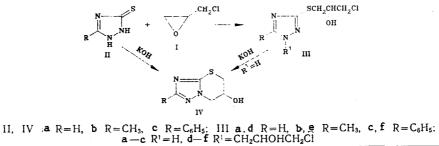
LITERATURE CITED

- 1. R. Elderfield (editor), Heterocyclic Compounds, Vol. 7, Wiley (1961).
- 2. A. R. Katritzky (editor), Physical Methods in Heterocyclic Chemistry, Academic Press (1963).
- M. G. Voronkov, T. V. Kashik, V. V. Makarskii, V. A. Lopyrev, S. M. Ponomareva, and E. F. Shibanova, Dokl. Akad. Nauk SSSR, <u>227</u>, 1116 (1976).
- 4. L. J. Bellamy, Infrared Spectra of Complex Molecules, Wiley, New York (1958).
- 5. I. V. Tselinskii, S. F. Mel'nikova, S. N. Vergizov, and G. M. Frolova, Khim. Geterotsikl. Soedin., No. 1, 35 (1981).
- 6. A. Albert and E. Serjeant, Ionization Constants of Acids and Bases, Wiley (1962).
- 7. A. Katritzky (Editor), Advances in Heterocyclic Chemistry, Vol. 9, Interscience, New York-London (1968), p. 203.
- 8. A. I. Biggs and R. A. Robinson, J. Chem. Soc., 388 (1961).
- 9. Yu. A. Zhdanov and V. I. Minkin, Correlation Analysis in Organic Chemistry [in Russian], Rostov-on-Don (1966), p. 66.
- 10. V. Rao and V. Srinivasan, Indian J. Chem., 8, 509 (1970).
- 11. L. Fieser and M. Fieser, Reagents for Organic Synthesis, Wiley (1967).
- 12. E. Bullock, Can. J. Chem., <u>36</u>, 1686 (1958).
- 13. D. D. Perrin, Aust. J. Chem., <u>16</u>, 575 (1963).

REACTION OF 1,2,4-TRIAZOLE-3-THIONES WITH

1-CHLORO-2, 3-EPOXYPROPANE


- B. V. Trzhtsinskaya, É. I. Kositsyna,
- B. Z. Pertsikov, E. V. Rudakova,
- V. K. Voronov, and G. G. Skvortsova

UDC 547.431.2'792'864:543.422

Addition of l-chloro-2,3-epoxypropane to 1,2,4-triazole-3-thiones depending on the ratio of the reactants leads to the formation of 3-(1-chloro-2-hydroxypropyl)-3-(1-chloro-2-hydroxypropylthio)-1,2,4-triazoles. 3-Hydroxy-1,2,4-triazolo[2,3-b] tetrahydro-1,3-triazines have been synthesized by intramolecular cyclization of the monoadducts.

When five-membered nitrogen-containing heterocyclic compounds are interacted with 1chloro-2,3-epoxypropane (I), two reaction pathways occur depending on the conditions. Base catalyzed alkylation leads to the formation of glycidyl-substituted azoles [1-3] or opening of the epoxide ring gives 1-chloro-2-hydroxypropyl-substituted azoles [4-7].

In the present work the reaction of 1,2,4-triazole-3-thione and its derivatives (IIa-c) with epoxypropane I has been studied. In the presence of organic bases the process occurs with opening of the epoxide ring to give 3-(1-chloro-2-hydroxypropylthio)-5-R-1,2,4-triazoles (IIIa-c).

Irkutsk Institute of Organic Chemistry, Siberian Branch, Academy of Sciences of the USSR, Irkutsk 664033. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 271-274, February, 1987. Original article submitted September 10, 1985; revision submitted March 5, 1986.

-	Chemical shifts, ppm (multiplicity)									
Com- pound	s-c ^H _A		, H _{A'}	Н "	R					
		СН _Х (ла;	$CI - C < H_{B'}$ (m)	$\frac{N-C < H_{B'}}{(q)}$	H (S)	CH3 (S)	C₀H₅ 1000)			
IIIa	3,35 m	4,18	3,65	_	8,44	-	_			
ШЪ	3,38 m	4,28	3,86		-	2,55	L			
III c	3,48 m	4,26	3,80				7,50-8,04			
IVa	3,27 q	4,53	—	4,20	7,85		- 1			
	3.39 q			4,20 4,29						
IVīb	3.29 q	4,50		4,08	l	2,23	- 1			
	3,40 q	ŕ)	4,17	}		1			
IVC	3,25 q	4,55	_	4,25	_		7.39-7.96			
	3,35q	-,00		4,33						

TABLE 1. PMR Spectra of Compounds IIIa-c and IVa-c

The effect of the conditions on the yield of the final reaction product has been studied in greater detail using unsubstituted triazolethione IIa as a model. The reaction in dioxane solution in the presence of triethylamine, pyridine, or KOH gives compound IIIa in high yield even at 20°C. When a less basic catalyst such as pyridine is used, in order to complete the reaction it is necessary to increase its duration or heat it to 70°C. Under comparable conditions in benzene the yields of IIIa do not exceed 30%. An increase in polarity of the solvent (ethyl alcohol) makes it possible to obtain propylthiotriazole IIIa in quantitative yield even in the absence of a catalyst.

Introduction of a methyl substituent into the 5-position of the heterocycle lowers the reactivity - product IIIb is isolated only when the reaction is carried out in alcohol or dioxane with heating.

When an excess of epoxypropane I is used, the diadducts 1-(1-chloro-2-hydroxypropy1)-3-(1-chloro-2-hydroxypropy1thio)-5-R-1,2,4-triazoles (IIId-f) are synthesized.

In the IR spectra of compounds IIIa-f there are no "thiomide I" absorption bands, which are characteristic of triazolethiones IIa-c (1565, 1600, and 1570 cm⁻¹), and an intense absorption appears in the region 1265-1295 cm⁻¹ from a triazole ring which does not have a thioamide fragment in its structure. This indicates that addition of epoxypropane I takes place on the sulfur atom to give monoadducts. In the spectra in solution an absorption band from the unsubstituted NH group is also observed at 3449-3436 cm⁻¹, which is not present in the spectra of the diadducts IIId-f. The absorption bands at 3597-3606 and 3560-3580 cm⁻¹ relate to stretching vibrations of the monomeric and bonded OH group respectively. The ratio of intensities of these bands remains constant when the concentration is changed within the limits 0.020-0.001 moles/liter, which indicates the existence in these compounds of intramolecular hydrogen bonding between the proton of the hydroxy group and the chlorine atom.

The structure of compounds IIa-c is confirmed by their PMR spectra (Table 1). The diastereotopic geminal protons of the SCH₂ and CH₂Cl groups in combination with the proton at the asymmetric carbon atom form two three-spin systems of type ABM; this gives rise to a complex pattern in the spectrum which is not amenable to detailed interpretation using known methods for approximation of ABX spin systems [8]. The protons of the methylene group bonded to the surface atom appear at 3.35-3.48 ppm (relative magnetic nonequivalence is $\Delta\delta_{AB} \approx 0.02$ ppm) in the form of a multiplet arising from the overlap of two quartets with vicinal spin-spin coupling constants $J_{AX} \approx 5.5$ and $J_{BX} \approx 2.0$ Hz. The nonequivalence of the protons of the CH₂Cl group (multiplet with center in the region 3.65-3.86 ppm, relative chemical shift $\Delta\delta_{A'B'} \approx 0.05$ ppm) suggests the existence of a preferred conformation of molecule III, which is probably stabilized by the formation of an intramolecular hydrogen bond between the hydroxyl group and the chlorine atom having a relative gauche conformation. This proposal is in agreement with the features of the IR spectra of compounds IIIa-c.

The reaction of triazolethiones II with epoxypropane I in alcohol solution with potassium hydroxide used as catalyst leads to the formation of 3-hydroxy-7-R-1,2,4-triazolo[2,3-b]tetra-hydro-1,3-thiazines (IVa-c). Substituted triazolo-1,3-thiazines have been obtained previously by intramolecular cyclization of the adducts of triazolethiones IIa, b with 1-phenyl-2-cyano-acetylene [9]. When epoxypropane I was used, benzimidazo-1,3-thiazines [5] were synthesized.

Com- pound	T _{mp} , deg C	Fo	ound, %		Empirical	Calcu	lated	Yield,	
		CI	N	s	formula	Cl	N	s	7
III a III b III c III d III e III f Va Vb Vc	$\begin{array}{c} (1,5650)\\ 94-95\\ 106-108\\ (1,5500)\\ (1,5380)\\ (1,5820)\\ 193-194\\ 189-190\\ 219-221 \end{array}$	18,0 17,2 12,8 24,9 23,4 19,2 18,3 17,3 13,4	21,3 20,4 15,6 14,6 14,0 12,0 21,6 20,3 15,6	16,1 15,4 11,9 11,1 10,5 8,7 17,0 15,8 11,9	$\begin{array}{c} C_5H_8CIN_3OS\\ C_6H_{10}CIN_3OS\\ C_{11}H_{12}CIN_3OS\\ C_{11}GI_2N_3O_2S\\ C_9H_{15}CI_2N_3O_2S\\ C_9H_{15}CI_2N_3O_2S\\ C_{14}H_{17}CI_2N_3O_2S\\ C_{3}H_{7}N_3OS \cdot HCI\\ C_6H_9N_3OS \cdot HCI\\ C_{11}H_{11}N_3OS \cdot HCI\\ \end{array}$	18,3 17,1 13,1 24,8 23,6 19,6 18,3 17,1 13,1	21,7 20,2 15,6 14,7 14,0 11,6 21,7 20,2 15,6	16,6 15,4 11,9 11,2 10,7 8,8 16,6 15,4 11,9	97 98 75 93 90 98 83 83 83 43

TABLE 2. Properties of Compounds Synthesized

TABLE 3. 3-Hydroxy-1,2,4-triazolo[2,3-b]tetrahydro-1,3-triazines

Com- pound	T _{mp} . deg C	Found, %				Empirical	Calculated, %			Yield, %	
		с	н	N	S	formula	с	Н	N	S	
IVa IVb IVc	155 169—170 194—195		4,6 5,1 4,8	26,6 24,4 18,1	20,4 18,6 13,3	C₅H ₇ N₃OS C₅H ₉ N₃OS C₁₁H₁₁N₃OS	38,2 42,1 56,6	4,5 5,3 4,7	26,7 24,5 18,0	20,4 18,7 13,7	63 52 55

The formation of triazolethiazines IVa-c is due to intramolecular alkylation of the initially formed chloropropylthiotriazoles IIIa-c. For confirmation of this they were treated with alcoholic alkali and as a result compounds IVa-c were isolaed.

In the IR spectra of cyclic compounds IVa-c a pattern similar to that for adducts IIIa-c is observed. The high-frequency absorption bands at $3598-3604 \text{ cm}^{-1}$ characterize the free OH group and the lower-frequency bands ($3532-3537 \text{ cm}^{-1}$) are due to the formation of intramolecula hydrogen bonding.

As a result of forming the thiazine ring the degree of nonequivalence of the diastereotop protons of the SCH₂ and NCH₂ groups becomes significant - $\Delta\delta_{AB} \cong \Delta\delta_{A'B'} \cong 0.1$ ppm (see Table 1) - which makes a complete analysis of the AB and A'B' subspectra possible using method [8] for an ABX approximation. The resonance from the protons of the SCH₂ group is characterized by two superimposed quartets with the following parameters: $\delta_A = 3.35-3.40$; $\delta_B = 3.25-3.29$ ppm ${}^{3}J_{AX}(\text{trans}) = 4.2$; ${}^{3}J_{BX}(\text{cis}) = 3.6$; ${}^{2}J_{AB} = 13.0$ Hz. The subspectrum of the protons of the NCH₂ fragment has similar characteristics in terms of multiplicity: $\delta_{A'} = 4.08-4.25$; $\delta_{B'} = 4.17-4.33$ ppm; ${}^{3}J_{A'X}(\text{trans}) = 5.8$; ${}^{3}J_{B'X}(\text{cis}) = 2.6$; ${}^{2}J_{A'B'} = 13.0$ Hz.

When treated with hydrogen chloride, triazolethiazines IVa-c readily form the correspondi hydrochlorides Va-c. The IR spectra of these compounds are characterized by a displacement of the stretching vibration bands from the ring to shorter wavelength 1450, 1490-1520, and 1570 cm⁻¹, and by absorption in the region 2400-2600 cm⁻¹.

EXPERIMENTAL

IR spectra wre recorded on a Specord 75-IR instrument as a thin layer, in KBr pellets, an in chloroform solution; PMR spectra were recorded on a Tesla BS-497 instrument (100 MHz) at 20°C in CD_3OD with TMS as internal standard.

<u>3-(1-Chloro-2-hydroxypropylthio)-1,2,4-triazoles (IIIa-c).</u> A mixture of 0.01 mole of triazole II, 0.8 ml (0.01 mole) of epoxypropane I, and 5 drops of triethylamine in 25 ml of dioxane (or methyl alcohol for IIIb) was agitated for 6 h at 20°C. The solvent was distilled off, and the residue was dried under vacuum to give a viscous substance. On standing compounds IIIb, c crystallized out.

<u>1-(1-Chloro-2hydroxypropyl)-3-(1-chloro-2-hydroxypropylthio)-1,2,4-triazoles (IIId-f).</u> A mixture of 0.01 mole of triazole II, 1.8 ml (0.02 mole) of epoxypropane I, and 5 drops of triethylamine in 20 ml of dioxane was heated for 4 h at 95°C, the solvent was distilled off, and a viscous substance was separated. The properties of compounds IIIa-f synthesized are given in Table 2.

<u>3-Hydroxy-1,2,4-triazolo[2,3-b]tetrahydro-1,3-thiazines (IVa-c). A</u>. To a solution of 1.2 g (0.02 mole) of KOH and 0.02 mole of triazole II in 50 ml of methyl alcohol was added dropwise 1.8 ml (0.02 mole) of epoxypropane I; the mixture was agitated for 5 h at 20°C and for 1 h at the boiling point of methyl alcohol. The precipitate of KCl which had formed was filtered off and the filtrate was passed through a layer of Al_2O_3 in order to remove residual KCl. The solvent was distilled off and the residue was extracted with acetone; a crystalline product was separated from the solution of acetone (see Table 3). <u>B</u>. 0.005 mole of propylthiotriazole IIIa-c was added to a solution of 0.3 g (0.005 mole) of KOH in 20 ml of methyl alcohol; the mixture was agitated for 6 h at the boiling point of methyl alcohol and treated according to method A.

<u>Triazolethiazine Hydrochlorides (Va-c)</u>. Hydrogen chloride was bubbled through a solution of 0.2 g of triazolethiazine in a mixture of chloroform-methanol (20:1) for 4 h. The crystalline precipitate was filtered off. The properties of compounds Va-c synthesized are given in Table 2.

LITERATURE CITED

- 1. R. G. Aflyatunova, N. A. Aliev, Ch. Sh. Kadyrov, and R. Razakov, Uzb. Khim. Zh., No. 6, 24 (1975).
- V. N. Artemov, O. P. Shvaika, A. N. Sorokina, N. I. Korotkikh, and L. B. Kanskaya, USSR Inventor's Certificate No. 765,267; Byull. Izobret., No. 35 (1980).
- 3. V. N. Artemov, O. P. Shvaika, L. B. Kanskaya, and N. I. Korotkikh, USSR Inventor's Certificate No. 1,002,290; Byull. Izobret., No. 9 (1983).
- 4. S. N. Lewis, J. H. Levy, and N. Z. Harton, US Patent No. 3937716; Chem. Abstr., <u>84</u>, 164752 (1976).
- 5. J. Sawlewiz and M. Grzybowski, Acta Pol. Pharm., 35, 7 (1978).
- 6. S. R. Buzilova, N. I. Kuznetsova, V. M. Shul'gina, G. A. Gareev, and L. I. Vereshchagin, Khim. Geterotsikl. Soedin., No. 1, 119 (1983).
- N. K. Rozhkova, K. Sabirov, and K. L. Seitanidi, Khim. Geterotsikl. Soedin., No. 11, 1479 (1983).
- 8. H. Gunther, NMR Spectroscopy: Introduction, Wiley (1980).
- 9. N. D. Abramova, B. V. Trzhtsinskaya, Yu. M. Skvortsov, A. G. Mal'kina, A. I. Albanov, and G. G. Skvortsova, Khim. Geterotsikl. Soedin., No. 8, 1051 (1982).